Category: Biologie

Wer weniger atmet, lebt länger

https://upload.wikimedia.org/wikipedia/commons/7/75/Nothobranchius_furzeri_GRZ.jpg
Der Türkise Pachtgrundkärpfling (Nothobranchius furzeri) commons.wikimedia.org CC BY-SA 3.0

Wissenschaftler des Jenaer Forschungskonsortiums JenAge haben herausgefunden, dass die Aktivität einiger Gene in jungen Aquarienfischen vorhersagt, wie alt diese Fische werden. Die Gene enthalten den Bauplan für eine Gruppe von Proteinen, die in der Zellatmung eine Rolle spielen. Luft anhalten hilft also leider nicht, denn die Zellatmung kann man damit auf Dauer nicht beeinflussen. Aber was ist Zellatmung?

Bevor ich das erkläre, erst einmal ein wenig über den Fisch. Unter Aquarianern ist er als Türkiser Prachtgrundkärpfling bekannt, auf Schlau heißt er Nothobranchius furzeri. Der lustige Name kommt daher, dass er von einem Forscher namens Richard Furzer entdeckt wurde (der zu seinem eigenen Glück Amerikaner war und darum in seiner Kindheit hoffentlich nicht gehänselt wurde). Das Besondere an diesem aus Afrika stammenden Fisch ist, dass er in Tümpeln und großen Pfützen lebt, die in der Regenzeit entstehen und auch recht schnell wieder austrocknen. Er muss sich darum sehr schnell entwickeln und fortpflanzen – und stirbt auch recht schnell wieder. Selbst unter Idealbedingungen im Aquarium lebt er nur etwa drei Monate, allerhöchstens wird er ein Jahr alt (das ist aber eher die Ausnahme). Und ähnlich wie viele Menschen entwickelt auch der Prachgrundkärpfling im Alter Tumore und erleidet eine Abnahme der Hirnfunktionen. Er ist also ein interessantes Modell, um Alterungsprozesse zu erforschen und vor allem herauszufinden, ob und wie Altern und  Lebensdauer genetisch festgelegt sind.

Die Fragen nach dem Ob und Wie konnten nun ein stückweit beantwortet werden, als Forscher um Alessandro Cellerino am Leibniz-Institut für Alternsforschung in Jena herausfanden, dass die Fische mit der geringsten Genaktivität für einige Zellatmungs-Proteine am ältesten wurden. Nun also zur Zellatmung:
Mit diesem Begriff bezeichnet man die Umwandlung von Zucker aus unserer Nahrung in Energie in der Zelle. Diese Energie wird in einem Molekül gespeichert, dem Adenosintriphosphat (ATP). Wird ATP von Enzymen in der Zelle benutzt, zerfällt es gewissermaßen und setzt dabei Energie frei. Ohne ATP könnten die Enzyme ihre Arbeit – den Aufbau von Strukturen in unserem Körper, den Abbau von Nährstoffen, etc. – nicht verrichten. Ist ATP einmal in seine Bestandteile zerfallen, wird es jedoch nicht nutzlos, denn durch den Verbrauch von Zucker kann es wieder “zusammengesetzt”, also recycelt werden (das Recycling von ATP ist also der Grund, weshalb wir essen müssen). So geht das immerfort, und dieser ganze Prozess heißt Zellatmung.  Das ATP-Recycling findet in speziellen Zellorganellen, den Mitochondrien statt. Was hat das alles mit Atmung zu tun? Ganz einfach – dieser Prozess benötigt Sauerstoff. ATP ist also auch noch der Grund, weshalb wir atmen müssen! Ganz schön gierig, dieses ATP! Nun ja, wir sollten ihm verzeihen, denn ohne es könnten wir nicht leben.

Für die Zellatmung benötigen die Mitochondrien viele verschiedene Proteine, die in Komplexen zusammenarbeiten. Der Bauplan für jedes dieser Proteine ist in dem für ihn spezifischen Gen gespeichert. Ist ein Gen besonders aktiv, wird der Bauplan häufig abgelesen und umgesetzt, also viel von dem jeweiligen Protein produziert.

Die Wissenschaftler im Team von Alessandro Cellerino untersuchten eine Gruppe von 45 Prachtgrundkärpflingen, indem sie kleine Gewebeprobem von ihren Schwanzflossen nahmen (die wachsen bei Fischen nach). Sie taten das einmal 10 Wochen, nachdem die Fische aus dem Ei geschlüpft waren, und noch einmal 20 Wochen danach. Dann warteten sie, bis die Fische an Altersschwäche starben. Auf Grund des Alters bei ihrem natürlichen Tod teilten die Forscher die Fische dann in drei Gruppen ein: kurzlebig, langlebig und sehr langlebig. Mithilfe der zuvor entnommenen Gewebeproben konnten sie dann nachsehen, welche Gene bei welcher Gruppe besonders hohe oder niedrige Aktivität zeigte. Dabei stellte sich heraus, dass die Gene für den oben erwähnten Atmungskomplex bei den sehr langlebigen Fischen die geringste Aktivität zeigte, bei den kurzlebigen Fischen entsprechend die höchste.

Cellerinis Team ging noch einen Schritt weiter und verabreichte einigen Fischen das Medikament Metformin, dass die Funktion dieses Atmungskomplexes in den Mitochondrien hemmt. Und die mit Metformin behandelten Fischen lebten dann auch länger. Die Alterung wird also nicht an sich durch die Aktivität der Gene beschleunigt, sondern durch die daraus resultierende größere Zahl an Atmungskomplexen.

Bisher dachte man, eine auf Hochtouren laufende Zellatmung wäre besser für die Zellen, nun stellt sich also heraus, dass eine reduzierte Zellatmung gesünder ist. Warum ist das so? Cellerino erklärt es so, dass bei einer reduzierten Zellatmung mehr freie Radikale entstehen als bei ungehemmter Zellatmung. Das scheint zunächst ein Widerspruch, denn freie Radikale zerstören Zellstrukturen. Aber eine nur leicht erhöhte Konzentration der feien Radikalen hat den Effekt, dass die Zellen mit ihnen umzugehen lernen und schneller auf Schäden reagieren. Die Zellen werden quasi gegen freie Radikale abgehärtet, was letztlich ihre Lebensdauer erhöht.

Metformin verlängert übrigens auch Mäuseleben und ist bereits als Medikament gegen Diabetes erhältlich. Aber jetzt nicht haufenweise Süßigkeiten essen, damit man irgendwann Metformin nehmen darf! Rotwein trinken ist anscheinend die bessere Lösung, denn der Stoff Resveratrol kommt darin in hoher Konzentration vor. Der hat in Versuchen mit Mäusen und Zellkulturen gezeigt, dass er lebensverlängernd und krebshemmend wirkt. Also, tief durchatmen und sich ein Gläschen gönnen!

Die Superbabies kommen…

fetus-embryo
Das obere Bild illustriert das Horrorszenario in den Köpfen vieler, wenn sie “Forschung an menschlichen Embryonen” hören. Es wird aber lediglich an kleinen Gruppen von Zellen sehr früher Embryonen geforscht. (Fotos:commons.wikimedia.org)

…erstmal nicht. In Großbritannien wurde vor wenigen Tagen die Erlaubnis gegeben, menschliche Embryonen genetisch zu verändern, das gab es nie zuvor. Sofort haben sich Stimmen geregt, die Bedenken aussprachen, jetzt könnten Supermenschen designt werden. Aber diese Angst ist unbegründet und ich möchte euch erklären, warum.

Zunächst einmal wurde die Erlaubnis nur einem einzigen Forschungsteam am Londonder Francis Crick-Institut erteilt. Geleitet wird dieses Team von der Molekularbiologin Kathy Niakan. Sie möchte die recht neu entwickelte CRISPR-Cas9-Methode nutzen, um gezielt einzelne Gene des menschlichen Genoms so verändern und die Auswirkung dieser Veränderung auf die menschliche Embryonalentwicklung zu studieren. Doch was bedeutet all das genau?

Beginnen wir beim Thema “Gene”. Ein Gen ist ein Teil der DNA eines Lebewesens. Auf der DNA ist all die Information gespeichert, die notwendig ist, um dieses Lebewesen zu “bauen”. Also zum Beispiel, wie groß man ist, welche Gesichtsform man hat, welche Haarfarbe, etc. Unser Körper ist zu einem goßen Teil aus Proteinen, also Eiweißstoffen aufgebaut. Doch Proteine sind nicht nur die Baustoffe unseres Körper, sie stellen auch viele “Arbeiter”, die dafür sorgen, dass unser Körper funktioniert.
Diese funktionellen Proteine, Enzyme genannt, sind auch wesentlich an der Entwicklung eines gesunden menschlichen Babies aus einer befruchteten Eizelle beteiligt. Und wenn eines dieser Enzyme nicht richtig funktioniert, können schwere Entwicklungsdefekte entstehen. Frühe Defekte, die bei den ersten Teilungen der befruchteten Eizelle auftreten, können die Eizelle an der Einnistung in die Plazenta hindern oder den jungen Embryo so stark schädigen, dass er abstirbt. Solche frühen Defekte sorgen für einige Arten der weiblichen Unfruchtbarkeit und einen Großteil der Fehlgeburten. Schätzungen zufolge entwickeln sich nur 13 % der befruchteten Eizellen über den dritten Schwangerschaftmonat hinaus!

Über die Gründe für diese zahlreichen früh scheiternden Schwangerschaften ist sehr wenig bekannt – und das möchte Niakan mit ihrer Forschung ändern. Was ist nun die CRISPR-Cas9-Methode?
Es handelt sich dabei um eine recht neu entwickelte Methode für die ganz gezielte Veränderung von Genen. Bis vor einigen Jahren war die Veränderung von Genen noch sehr schwierig und ungenau, mit extrem geringen Erfolgsraten. Etwa so, wie wenn man eine Reihe Dosen hat und eine bestimmte Dose wegschießen will, aber leider nur eine Schrotflinte zur Verfügung hat. Mit CRISPR-Cas9 wurde Wissenschaftlern in aller Welt nun ein Präzisionsgewehr mit Zielfernrohr in die Hand gegeben. Es funktioniert buchstäblich wie ausschneiden und einkleben. Man kann perfekt den Teil eines Gens entfernen, den man will und dafür etwas beliebiges anderes einfügen, oder den ausgeschnittenen Teil einfach löschen. Ich weiß wovon ich rede, ich habe die Methode im Labor selbst angewendet – allerdings an Fruchtfliegen – und es hat hervorragend funktioniert! Und nur mit einer solch genauen Methode ist es überhaupt sinnvoll, an menschlichen Embryonen zu forschen. Denn nur, wenn man ganz genau kontrollieren kann, welche Gene man verändert und auf welche Weise, kann man verlässliche Aussagen treffen. Niakan und ihre Kollegen können nun also erforschen, welche Gene für die frühe menschliche Embryonalentwicklung wichtig sind, und warum. Sie hoffen, damit die Erfolgsraten für natürliche und künstliche Befruchtung langfristig zu erhöhen. Und wenn man bedenkt, dass Frauen in den Industrieländern sich immer später im Leben für Kinder entscheiden, wenn die Fruchtbarkeit bereits eingeschränkt ist, ist diese Forschung umso wichtiger. Schon jetzt wird jedes 80. Kind in Deutschland durch künstliche Befruchtung gezeugt!

Und aus der künstlichen Befruchtung, in der Fachsprache in vitro-Fertilisation, kurz IVF (“im Glas-Befruchtung”) kommen auch die Embryonen, die Niakan und ihr Team verwenden werden. Für jede Frau, die IVF in Anspruch nimmt, werden mehr Embryonen befruchtet, als eingepflanzt werden – falls etwas schief geht. Die übrigen Embryonen durften bereits zuvor gespendet werden, zum Beispiel an Frauen, die selbst keine gesunden Eizellen hatten. Von nun an können Frauen in England die nicht eingepflanzten Embryonen auch dem Labor von Kathy Niakan spenden. Dort muss dann zügig gearbeitet werden, denn Niakan möchte sich die ersten sieben Tage der menschlichen Embryonalentwicklung genau anschauen. Die Embryos müssen nach spätestens 14 Tagen vernichtet werden und dürfen selbstverständlich keiner Frau eingepflanzt werden. Die Wissenschaftler dürfen auch nicht einfach wild drauflosforschen – jedes geplante Experiment, jedes untersuchte Gen muss zuerst dem Ethikrat vorgestellt werden, der in jedem Fall einzeln beschließt, ob das Experiment dem Erkenntnisgewinn dient und ethisch vertretbar ist.

Seit vielen Jahrzehnten versuchen Wissenschaftler in aller Welt, die menschliche Embryonalentwicklung besser zu verstehen. Bisher war das nur an Hand von Tiermodellen möglich. Ich selbst habe für genau diese Forschung die Fruchtfliege verwendet. Doch letztendlich kann man die Ergebnisse aus solchen Modellorganismen nicht uneingeschränkt auf en Menschen übertragen. Kathy Niaka und ihr Team können diese Lücke nun vielleicht schließen.

Trotz allen Regeln und Beschränkungen, denen die Forschung an menschlichen Embryonen nun noch unterliegt, denke ich persönlich, dass irgendwann einer Frau ein genetisch veränderter Embryo eingepflanzt wird. Ich glaube, dass es sich um einen Embryo handeln wird, bei dem einige krankhaft veränderte Gene repariert wurden. Und wer weiß, wohin das führt. Denn wir tun letztendlich doch alles, was möglich ist. Wir sind einfach zu neugierig, zu begierig auf Fortschritt, um es nicht zu tun. Versteht mich nicht falsch, ich bin absolut für diese Forschung. Aber ich gehe einfach davon aus, dass es immer weitere Kreise ziehen wird. Ich sehe dem recht zuversichtlich entgegen, schließlich bin auch ich nur eine neugierige Forscherin!

Patchworkfamilie – auf Genetisch

DNA_patchworkAnfang dieses Jahres wurde in Großbritannien eine neue Form der künstlichen Befruchtung zugelassen, bei der ein Kind gezeugt wird, dass drei genetische Eltern hat. Zwei Mütter, einen Vater. Eizelle und Spermazelle kommen von den leiblichen Eltern des Kindes. Die zweite Frau kommt als Mitochondrien – Spenderin ins Spiel. Was sind Mitochondrien und inwiefern kann eine Mitochondrien-Spende Paaren mit Kinderwunsch helfen?

Mitochondrien sind die „Kraftwerke“ der Zelle. Sie nutzen den Sauerstoff, den wir einatmen und der von den roten Blutkörperchen zu allen Zellen transportiert wird. Den Sauerstoff brauchen die Mitochondrien, um ATP herzustellen. ATP ist die Energiewährung alles Lebewesen, der Kraftstoff, der das Leben antreibt – wie Benzin oder Diesel beim Auto und Elektrizität im Haushalt. Alle unsere Muskeln und Organe brauchen das Molekül ATP, um ihre Aufgaben erfüllen zu können. Mitochondrien sind also extrem wichtige Bestandteile unserer Zellen. Und das Merkwürdige an ihnen ist, dass sie ihr eigenes Genom, also ihre eigene Erbinformation in Form von DNA in sich tragen. Diese Erbinformation ist unabhängig von der Haupt-Erbinformation des Menschen, die auf der DNA im Zellkern gespeichert ist. Diese Zellkern-DNA bestimmt die meisten unserer Eigenschaften – wie wir aussehen, welche Eigenschaften wir haben und so weiter. Doch auch die DNA in den Mitochondrien nimmt auf unser Leben Einfluss. Sie ist vor allem wichtig für die Funktion dieser kleinen Zell-Kraftwerke.

cell_simpleDNA

Und da beginnt das Problem, denn wenn Mitochondrien nicht richtig funktionieren, können fatale Krankheiten entstehen. So zum Beispiel das Leigh-Syndrom, das bei Säuglingen Muskelschwäche, Epilepsie und Entwicklungsverzögerungen verursacht und innerhalb weniger Jahre zum Tod führt. Andere Krankheiten, deren Ursache in den Mitochondrien liegt, gehen mit Taubheit, Sehstörungen, Muskellähmungen und Defekten im Nervensystem einher. Ziemlich scheußlich also. Seit etwa 20 Jahren arbeiten Forscher jedoch daran, Frauen aus Familien mit solchen mitochondrialen Krankheiten den Wunsch nach einem gesunden Kind zu erfüllen. Bevor ich dazu mehr erkläre, will ich erst einmal diese Frage beantworten: Wie kann es sein, dass Mitochondrien ihre eigene DNA haben? Und warum muss man sich keine Sorgen machen, wenn in der Familie des Mannes mitochondriale Krankheiten vorkommen?

Vor etwa anderthalb Milliarden Jahren schwammen in der Ursuppe die ersten primitiven Zellen herum. Sie alle hatten bereits Erbinformation auf einer recht kurzen DNA, die sie exakt kopierten und weitergaben, wenn sie sich teilten. Einige dieser frühen Zellen gewannen Energie, indem sie Sauerstoff und Kohlenstoffverbindungen aus dem Wasser aufnahmen und durch mehrstufige chemische Reaktionen in ihrem Zellinneren zu ATP verarbeiteten. Das kann man auch einfach „atmen“ nennen. Andere wiederum gewannen Energie, indem sie diese atmenden Zellen „fraßen“. Wie frisst ein Einzeller? Indem er seinen Zellkörper über den Zellkörper des anderen stülpt und ihn sich so gewissermaßen einverleibt. Die aufgenommene Zelle wird dann verdaut. Aber nicht immer. In einigen Fällen muss es wohl dazu gekommen sein, dass so ein Atmer von der anderen Zelle, die ihn in sich aufgenommen hatte, nicht verdaut wurde. Stattdessen blieb er als „Zelle in der Zelle“ am Leben und atmete weiter, setzte also Sauerstoff und Kohlenstoffverbindungen zu Energie um. Da dieser Atmer jetzt aber innerhalb einer anderen Zelle wohnte, kam dieser das ATP aus der Atmung auch zugute. Und der Atmer lebte geschützt und konnte nicht gefressen werden. Dieses Phänomen nennt man „Endosymbiose“. Das Wort ist aus verschiedenen griechischen Wörtern zusammengesetzt und bedeutet soviel wie „innen zusammenleben“ und wird verwendet, um eine Beziehung von beiderseitigem Nutzen zwischen zwei Lebewesen zu beschreiben. Im Laufe der Jahrmillionen verlor der Atmer viele Teile seiner DNA, sodass er nicht mehr frei leben konnte und zur Organelle wurde, einem Zellorgan. Doch auch heute haben diese Organellen, die wir nun „Mitochondrien“ nennen, noch genügend DNA um innerhalb der Zelle ein Eigenleben zu führen und sich selbstständig zu teilen.

Und was hat das mit Frauen und Fortpflanzung zu tun? Mitochondrien werden bei Säugetieren nur von der Mutter weitergegeben. Der Grund dafür ist einfach: die Spermien des Mannes müssen schnell sein. Mitochondrien haben ein gewisses Gewicht, das so ein Spermium langsam machen würde. Also enthalten Spermien schlichtweg keine Mitochondrien. Sie brauchen auch keine, da sie nicht besonders lange überleben müssen. All das ATP, das sie zum Schwimmen benötigen, wird vorher in den Spermien gespeichert.
Wenn die mitochondriale DNA aber Mutationen trägt, können die Mitochondrien nicht richtig funktionieren und es kommt zu Krankheiten. Die meisten Menschen mit Gendefekten in den Mitochondrien tragen eine Mischung aus kranken und gesunden Mitochondrien. So können oft die gesunden Mitochondrien die Defekte ausgleichen und eine Krankheit bricht nicht oder erst spät im Leben aus. Ist der Anteil kranker Mitochondrien jedoch höher als 60 %, können Krankheiten schon im Säuglingsalter ausbrechen. Solche Krankheiten sind nicht heilbar und meist auch nicht oder nur schwer behandelbar. Wenn eine Frau also weiß, dass solche mitochondrialen Krankheiten in ihrer Familie vorkommen, musste sie früher oft die schwere Entscheidung fällen, keine eigenen Kinder zu bekommen. Denn man kann nicht kontrollieren oder vorhersagen, wieviele kranke Mitochondrien an das Kind weitergegeben werden (selbst, wenn die Frau keine Symptome hat, kann sie einen gewissen Anteil kranke Mitochondrien haben).
Hier kommt nun die „Drei-Eltern-Befruchtung“ ins Spiel. Bei dieser Variante der künstlichen Befruchtung wird eine Eizelle der „echten“ Mutter mit dem genetischen Material des Vaters befruchtet. Das genetische Material dieser befruchteten Eizelle wird dann entnommen und in eine entkernte, befruchtete Eizelle der zweiten Frau eingebracht. So bekommt das Kind das genetische Material aus den Zellkernen seiner Eltern – und sieht ihnen damit ähnlich – hat aber die Mitochondrien einer anderen, gesunden Person. Da die Mitochondrien nicht mithilfe von Genen aus dem Zellkern hergestellt werden, sondern sich selbstständig innerhalb der Zelle teilen, ist dieser genetische Mix kein Problem.

Das genetische Material aus der befruchteten Eizele der leiblichen Mutter wird in die entkernte, befruchtete Eizelle der Mitochondrien-Spenderin übertragen. (aus: Paula Amato et al., Fertil Steril 2014)
Das genetische Material aus der befruchteten Eizele der leiblichen Mutter wird in die entkernte, befruchtete Eizelle der Mitochondrien-Spenderin übertragen.
(aus: Paula Amato et al., Fertil Steril 2014)

Diese neue Methode wird in Großbritannien bereits angewendet. Doch in allen anderen Ländern ist sie nicht erlaubt, da sich ethische Probleme ergeben: Die Eizelle mit den gesunden Mitochondrien muss ebenfalls befruchtet sein. Eine befruchtete menschliche Eizelle ist streng gesehen jedoch ein lebensfähiger menschlicher Embryo. Mit der Entfernung des genetischen Materials aus diesem Embryo nimmt man ihm die Chance, zu leben. Es gibt jedoch eine zweite Methode, bei der keine Befruchtung der Spender-Eizelle notwendig ist. Bei dieser Methode wird die Eizelle erst befruchtet, nachdem das genetische Material der leiblichen Mutter in die entkernte Spender-Eizelle eingebracht wurde. Doch trotzdem ergeben sich praktische Erwägungen: Wieviel bezahlt man der Eizell-Spenderin? Hat sie auch ein Recht auf das Kind? Ganz abgesehen von den ethischen Fragestellungen, die seit dem Beginn der künstlichen Befruchtung bestanden, z.B., ob wir irgendwann diese Technik nutzen werden, um das perfekte Kind, den perfekten Mensch, den perfekten Soldaten zusammenzubauen.

Ich persönlich glaube, dass wir Menschen einfach zu neugierig sind, um etwas, das möglich ist, nicht zu tun. Die Neugier ist es, die uns so weit hat kommen lassen. Sie treibt alles voran: Kunst, Kultur, Wissenschaft. Was ist möglich, wie weit können wir kommen? Dieser Frage werden Menschen immer nachgehen. Die neuen Techniken werden immer weiter entwickelt werden und alles, was möglich ist, werden wir irgendwann auch tun. Ethische Bedenken werden wir immer haben, doch letztendlich werden wir wohl den Fortschritt wählen. Ich glaube allerdings nicht, dass wir in zehn Jahren schon perfekte Babys züchten. Vielleicht in hundert oder fünfhundert Jahren. Ob das gut oder schlecht ist, weiß ich nicht. Es gibt Argumente für beide Seiten. Es muss jeder für sich entscheiden, welche Meinung er hat und welche Seite er unterstützt. Als Wissenschaftler bin ich natürlich ein neugieriger Mensch. Und ich kann nicht leugnen, dass ich die Möglichkeit, sich bewusst für ein gesundes Kind zu entscheiden attraktiv finde.

Der Wald muss BRENNEN!

Foto: greenplanetethics.com

Der Sommer kommt und mit ihm Waldbrände und Buschfeuer auf der ganzen Welt. In den Medien werden diese Ereignisse als Katastrophen dargestellt. Doch eigentlich sind sie nur für den Menschen katastrophal und das auch erst, seitdem wir sesshaft geworden sind. Man will eben einen schöne Aussicht genießen, nicht wahr, da baut man sein Haus eben ganz nah an die Natur ran. Oder man muss die Natur in unmittelbarer Nähe einer größeren Stadt erhalten, weil sonst gar keine mehr da wäre. Und wenn es in so einem Wald nahe an besiedeltem Gebiet mal brennt, rückt sofort die Feuerwehr an und es wird gelöscht.

Das ist unnatürlich und schafft Probleme.

Denken wir uns mal zurück in eine Zeit vor der flächendeckenden Besiedlung durch den Menschen. Im trockenen Hochsommer entzündet sich irgendwo in einem Wald ein Haufen trockener Kiefernnadeln. Das Feuer verbreitet sich schnell im Unterholz und zerstört totes Material, das im letzten Herbst angefallen ist. Das geht ziemlich schnell, denn dieses Material ist knochentrocken. Das kennt man vielleicht vom Lagerfeuer – man schmeißt einen uralten, trockenen Ast rein und freut sich, wie schnell er Feuer fängt – und ist dann enttäuscht, dass keiner der dickeren, frischeren Scheite anbrennt. Das Feuer ging einfach zu schnell wieder aus. Und dasselbe passiert in einem naturbelassenen Wald: Altes, Totes verbrennt so schnell, dass frische grüne Pflanzen gar nicht erst Feuer fangen. Neue Pflanzen, die gerade aus dem Boden kommen, kriegen Licht und Luft und fruchtbaren Nährboden. Alles wunderbar. Es sei denn, man löscht alles sofort. Dann kann totes Material sich über Jahrzehnte ansammeln und Pflanzen im Unterholz wachsen immer dichter. Wenn es dann brennt, hat man so viel totes Zeug, dass es eine Weile brennt. Dann hat das Feuer Zeit, auf die dichtgewachsenen Pflanzen im Unterholz überzugreifen, die dann auch so lange brennen, bis das Feuer die großen, älteren Bäume angreifen kann. Und dann haben wir die Katastrophe: Einen gewaltigen, unkontrollierbaren, hausgemachten Waldbrand. Die Brände können extreme Hitze im Boden verursachen, sodass auch in der Erde gelagerte Samen zerstört werden, die einen kurzen Brand überleben würden. So kann sich der Wald nach einem Brand auch nicht mehr von selbst erholen.

Viele Bäume können durch eine dicke Rinde Feuern standhalten. Ein Beispiel ist die nordamerikanische Gelbkiefer, deren Rinde bis zu 5 cm dick ist. Außerdem stehen diese Bäume unter natürlichen Bedingungen weit auseinander, sodass ein Feuer nicht vom Baum zu Baum übergreifen kann. Wer sich heimische Kiefern schon einmal genauer angeschaut hat, dem sind vielleicht die sehr hohen Kronen aufgefallen. Kiefern haben keine Äste am Stamm, wie andere Nadelbäume. Ein durch das Unterholz fegende Feuer kann so einer Kiefernkrone also nichts anhaben. In bewirtschafteten Wäldern werden Bäume so dicht wie möglich nebeneinander gepflanzt, um die Holzerträge zu erhöhen. Hier hat ein Feuer leichtes Spiel, da es von Baumkrone zu Baumkrone springen kann. In Nordamerika bemüht man sich jetzt, auch Wirtschaftswälder wieder weniger dicht zu pflanzen, um die Feuergefahr zu verringern.

Ein Feuer überstehen ist ja ganz nett. Viel interessanter finde ich ja die Pflanzen, die Feuer brauchen, um sich z.B. fortpflanzen zu können. Und dann sind da noch die Pflanzen, die Feuer verursachen. Absichtlich.
In der ersten Gruppe, den sogenannten Pyrophyten (zu dt. etwa „Feuerpflanzen“) finden wir zum Beispiel die immergrünen Banksien in Australien. Sie haben sehr harte hölzerne Fruchtstände, die von Harz verschlossen sind. Dieses Harz braucht die Hitze eines Feuers, um zu schmelzen und die Samen freizugeben. Damit sie jedoch nicht sofort herausfallen und verbrennen, ist der Samen zusätzlich von einer Hülle umgeben, die den Samen im geöffneten Fruchtstand festhält. Wenn das Feuer vorüber ist, lässt Feuchtigkeit (z.B. Tau oder Regen) die Hülle anschwellen, wodurch sie sich öffnet und der Samen herausfällt. Da das Feuer die Unterholz-Vegetation zerstört hat, fällt der Samen auf fruchtbaren Boden und hat genug Licht. Ein Meisterstück der Evolution!
Auch die insektenfressende Venusfliegenfalle benötigt regelmäßige Brände, und zwar für ihr nacktes Überleben. Sie ist recht klein und wächst dicht am Boden. Außerdem besitzt sie unterirdische Rhizome, das sind so eine Art unterirdische Triebe, aus denen Blätter und ganze Pflanzen wachsen können. Im Garten hat man das Vielleicht bei Maiglöckchen oder Schwertlilien schon mal gesehen. Ingwer ist auch ein Rhizom (also der Teil, den man essen kann). Nach einem Feuer kann die Venusfliegenfalle aus ihren Rhizomen wieder austreiben und hat reichlich Licht, da alle anderen Pflanzen ja verbrannt sind. Passiert das nicht regelmäßig, wird die Venusfliegenfalle überwuchert und stirbt.
Die Samen vieler Pflanzen in Ökosystem, wo es hin und wieder brennt, warten im Boden auf ein Feuer, bevor sie auskeimen. Die Hitze verursacht ein chemisches Signal im Samen, das den Keimvorgang startet.
Und jetzt die ganz schlimmen – die Zündelfritzen unter den Pflanzen. Da wäre die aus Kalifornien stammende Strauchige Scheinheide (Adenostoma fasciculatum), deren Blätter mit brennbarem Öl überzogen sind. Wenn es da anfängt zu brennen, sorgt die Scheinheide dafür, dass das Feuerchen auch ja nicht wieder ausgeht und ordentlich an Größe gewinnt. Die Pflanze selbst verbrennt zwar, treibt aber aus unterirdischen oder nahe am Boden gelegenen überlebenden Trieben schnell wieder aus – und hat die Konkurrenz mal eben vernichtet. Dictamnus Albus, der Aschwurz, ist eine Blütenpflanze, die etwa 120 cm hoch werden kann und wegen ihrer schönen Blüten und ihrem angenehmen zitronig-vanilligem Geruch gerne in Gärten kultiviert wird. Der Wohlgeruch stammt allerdings von ätherischen Ölen, die die Pflanze im Sommer in derartigen Mengen produziert, dass sie regelrecht von den Blättern tropfen. Solche Öle sind dummerweise leicht entzündlich. Wenn so ein Öltropfen an einem heißen Tag das Sonnenlicht fokussiert wie eine Lupe, kann die Pflanze schon mal kurz in Flammen aufgehen. Das Öl verbrennt jedoch so schnell, dass die Pflanze keinen Schaden nimmt. Ob diese spontane Selbstentzündung Absicht ist oder ein Nebeneffekt der Duftproduktion, ist nicht geklärt. Wer mal im Mittelmeerraum unterwegs ist und eine Aschwurz entdeckt, kann mal eben ein Streichholz unter die Blüte halten – und dann nichts wie weg!

Fazit: Waldbrände sind, im Abstand von 10 bis 30 Jahren, normal und sogar nützlich. Pflanzenbestände und die Tiere, die von ihnen leben, brauchen sie. Doch leider ist es aufgrund des dichten Nebeneinanders von Menschen und Wald selten möglich, der Natur ihren Lauf zu lassen. Die Bilder von gigantischen Flammen, die hundert Meter in den Himmel schlagen werden also so bald nicht aus den Medien verschwinden.

Alt aussehen, jung bleiben

naked mole-rat
Foto: National Geographic

Welches ist das hässlichste Säugetier der Welt? Genau, der Nacktmull. Entdeckt wurde er 1842 in Afrika von dem deutschen Wissenschaftler Eduard Rüppell, der annahm, das von ihm gefangene Exemplar sei ein altes, krankes Tier. Später stellte sich heraus, dass er sich geirrt hatte – die sehen immer so aus.

Der Nacktmull ist ein äußerst bemerkenswertes Tier, nicht nur, was sein Aussehen betrifft. So ein Nacktmull kann nämlich bis zu 30 Jahre alt werden. Dreißig! Das ist sehr alt für ein so kleines Nagetier. Nur zum Vergleich: Ratten, die etwa genauso groß sind, werden nur ca. 3 Jahre alt. Stachelschweine, die mit ca. 80 cm Körperlänge zu den größten Nagetieren gehören, können ein ähnliches Alter erreichen wie die Nacktmulle. Doch den Rekord hält immer noch ein Nacktmull, der im Alter von 31 Jahren starb. Das älteste Stachelschwein wurde nur 27.

Ein kleiner Exkurs: Warum werden große (Säuge-)Tiere im Allgemeinen älter als kleine Tiere? Das liegt am Verhältnis zwischen Körperoberfläche und Körpervolumen. Ein großes Tier hat im Vergleich zu seinem Volumen eine recht kleine Oberfläche. Je kleiner ein Tier ist, umso größer ist seine Körperoberfläche im Verhältnis zu seinem Körpervolumen. Und eine große Oberfläche ist ein Problem, weil sie viel Wärme abstrahlt. Die muss ersetzt werden, indem das Tier durch das verstoffwechseln von Nahrung Energie erzeugt. Wer Mäuse hält, oder Ratten oder Meerschweinchen, dem wird aufgefallen sein, dass diese Tiere eine hohe Herzfrequenz haben und sehr schnell atmen. Ein Mäuseherz schlägt ca. 670 mal in der Minute, ein Menschenherz nur 72 mal, Pferde bringen es auf 38 Herzschläge – und dem Blauwal reichen sechs Herzschläge pro Minute. So ein schneller Stoffwechsel sorgt aber auch dafür, dass die Zellen sich schnell abnutzen. So altert das Tier schneller und stirbt eher.

Nicht so jedoch der Nacktmull! Was ist sein Geheimnis? Nun, fangen wir mal beim Stoffwechsel an. Fast alle Säugetiere sind gleichwarm, das heißt, sie halten eine konstante Körpertemperatur aufrecht, egal, wie warm oder kalt es um sie herum ist. Der Mensch hat etwa eine konstante Temperatur von 37 °C. Der Nacktmull jedoch ist das einzige Säugetier, das dies nicht tut. Er ist so warm wie seine Umgebung, das nennt man „wechselwarm“. Reptilien und Amphibien, also z.B. Schlangen, Eidechsen und Frösche, sind ebenfalls wechselwarm. Bei niedrigen Temperaturen verlangsamt sich ihr Stoffwechsel. Und das ist auch schon eines der Geheimnisse des Nackmulls – wenn es kühl ist, schlägt sein Herz sehr langsam. Das spart Energie und verlängert das Leben.

Auch sein Verhalten passt der Nacktmull an die Temperatur an. Nacktmulle leben in unterirdischen Höhlensystemen, die die Tierchen mit ihren Zähnen graben. In so einem Bau leben durchschnittlich 75 Tiere zusammen. Wenn es kalt ist, begeben sie sich näher an die warme Oberfläche und kuscheln sich aneinander. So muss jeder seinen Stoffwechsel nicht allzusehr ankurbeln.

In diesen Höhlen ist allerdings der Sauerstoff zum atmen recht knapp. Die vielen Mulle, die da zusammenleben, atmen alle Sauerstoff ein und Kohlendioxid wieder aus, wie jedes atmende Tier. Das Kohlendioxid sammelt sich in den Höhlen und so atmen die Mulle auch viel Kohlendioxid ein. Das führt zur Übersäuerung des Blutes und das verursacht Schmerzen. Theoretisch. Doch ein Nacktmull kennt keinen Schmerz! Und zwar buchstäblich. Er hat schlichtweg keine Schmerzrezeptoren. Schmerz verursacht Stress und Stress verkürzt das Leben. Und durch die Übersäuerung des Blutes würde ein Mull ständig Schmerzen spüren. Tut er aber eben nicht, und so ist eine weitere Voraussetzung zu einem langen Leben erfüllt – kein Stress.

Ein weiterer möglicher Stressfaktor im Leben eines Tieres ist die Partnersuche. Konkurrenten verjagen, balzen, sich aufdringliche Partner vom Hals halten – alles Stress. Doch auch dafür hat der Nacktmull eine Lösung. Er ist das einzige Säugetier (schon wieder), das „eusozial“ lebt. Das heißt, dass nur ein Weibchen sich paart. Das ist die Königin, und nur ein bis drei Männchen aus der Gruppe paaren sich mit ihr. Die restlichen Mulle sind Arbeiter, die Futter suchen, Gänge graben – und sich nicht um Produktion und Aufzucht der Jungen sorgen müssen.

Nacktmulle bekommen auch keinen Krebs. Krebs wird bekanntermaßen durch die unkontrollierte Teilung bestimmter Zellen verursacht. Alle Säugetiere, auch Menschen, haben eingentlich einen Mechanismus, der diese unkontrollierte Zellteilung verhindert. Der Mechanismus gibt den Zellen einen Stopsignal, sobald alle Zellen eines Gewebes einander berühren – dann „weiß“ der Körper, dass genügend Zellen da sind. Dieser Mechanismus kann allerdings fehlerhaft sein oder durch spontane Mutationen ausgeschaltet werden. Der Nacktmull besitzt denselben fehleranfälligen Mechanismus. Aber er hat noch einen, der im Prinzip genauso funktioniert, aber anscheinend strenger ist und weniger leicht auszuschalten.

Ob all diese wunderbaren Eigenschaften des Nackmulls uns helfen können, Krebs zu besiegen und unglaublich alt zu werden, muss sich noch zeigen. Die Forschung läuft jedenfalls auf Hochtouren, das Genom des merkwürdigen Nagers wurde in den letzten Jahren vollständig entschlüsselt. Ich bin gespannt, was die Zukunft bringt. Jedenfalls sehe ich jetzt nicht mehr nur das abstoßende Äußere des Nacktmulls, sondern auch seine faszinierende Biologie.

Velociraptor, der glorifizierte Truthahn

Velociraptor - Film und echt
Bilder von screeninvasion.com und Matt Martyniuk – image from http://en.wikipedia.org/wiki/Image:Velociraptor_dinoguy2.jpg

Diesen Sommer kommt Jurassic World in die Kinos. Ein guter Grund, um zurückzuschauen und ein bisschen die Wissenschaft hinter dem ersten Jurassic Park-Film zu beleuchten.

Jurrasic ist das englische Wort für Jura, ein Erdzeitalter in dem viele Dinosaurier lebten, zum Beispiel der Allosaurus, ein großer Raubsaurier, oder Brachiosaurus, der langhälsige Pflanzenfresser. Auch Archaeopteryx, der sogenannte Urvogel, lebte im Jura. Die Stars des Jurassic Park aber, T-Rex und Velociraptor lebten natürlich… nicht im Jura. Sondern in der Kreide. Da müsste der Film jetzt eigentlich „Cretaceous Park” heißen (Cretaceous ist das englische Wort für das Kreide-Zeitalter). Tut er leider nicht, spricht sich ja auch nicht so schön (man spricht es ungefähr so: Kri-täi-schus). Da bin ich schon ein bisschen enttäuscht. Film: 0 Punkte, Wissenschaft: 1 Punkt.

Velociraptoren, die Publikumslieblinge im Film, werden als mannshohe schuppige Monster mit Killerklauen dargestellt, mit denen sie ihre Beute der Länge nach aufreißen. 2005 drehte die britische BBC eine Doku zum Thema „Killersaurier“, in der sie die Fähigkeit dieser Klauen testeten, die Haut eines Schweins aufzuschneiden. Das klappte wirklich überhaupt nicht. Inzwischen vermuten Paläontologen, dass die Klauen verwendet wurden, um wichtige Blutgefäße anzustechen und das Opfer damit verbluten zu lassen. Zur Jagdtechnik gibt es auch einige neue Erkenntisse: Es stimmt wahrscheinlich, dass Velociraptoren zu mehreren jagten. Und sie sprangen ihre Opfer auch an, wie es im Film teilweise gezeigt wird. Der Zweck dieses Manövers war wahrscheinlich, sich schlicht auf die Beute draufzusetzen und sie damit in die Knie zu zwingen. Auf einem um sein Leben kämpfendes Tier zu sitzen ist allerdings nicht besonders gemütlich und erfordert gute Balance. Da sind lange Klauen zum festhalten ganz praktisch. Und seine gefiederten Arme nutze Velociraptor wohl ebenfalls zum Balancieren in solchen Situationen. Jawoll, er hatte Federn. 2007 wurden an einem Fossil aus Mongolien Federansätze an den Armen von Velociraptor gefunden. An Fossilien anderer Dinosaurier konnten größere Mengen Keratin nachgewiesen werden, dem Hauptbaustoff von Federn. Inzwischen weiß man von vielen Dinosaurierspezies, dass sie Federn hatten. Auch der gigantische zweibeinige Deinocherus gehört dazu, er konnte bis zu 11 m groß werden. In dem Bereich hat Velociraptor übrigens nicht viel vorzuweisen. Er würde einem Menschen nur etwa bis zum Knie reichen. Also, mannshohes, schuppiges, Beute-aufreißendes Untier gegen gefiederte truthahngroße Echse, die anscheinend auch mal gerne auf vier Beinen lief. Film: 0 Punkte, Wissenschaft: 2 Punkte.

Und zuletzt geht’s ans Eingemachte: Wäre es überhaupt möglich, Dinosaurier aus dem Blut im Bauch von Urzeitinsekten wieder zum Leben zu erwecken? Ähm, nein. Sorry. Saurier-DNA, die Erbsubstanz, die die dafür nötigen Informationen enthielte, ist zwar vielleicht tatsächlich in einigen Mückenmägen erhalten geblieben. Aber wenn überhaupt, dann nur in winzigen Stücken, die auf keinen Fall ausreichen würden, einen funktionierenden Organismus zu klonen. Selbst dann nicht, wenn man die Lücken mit Frosch-DNA füllt, wie im Film geschehen. Das ist überhaupt der größte Quatsch. Frösche sind Amphibien, mit einer dünnen Haut voller Sekretdrüsen zum Feuchthalten. Außerdem haben Frösche keine Rippen. Dinosaurier sind Reptilien, deren Haut von Schuppen bedeckt ist. Und Rippen haben sie auch. Warum würde man die Erbinformation eine Reptils mit der eines Amphibiums ergänzen? Warum denn bitteschön nicht mit der einer Schildkröte, eines Krokodils, eines Geckos? Alles Reptilien! Das ist so haarsträubend, dass es einen Minuspunkt gibt. Film: -1 Punkt, Wissenschaft: 3 Punkte. Hätten wir das auch geklärt.

Ich werde den Film natürlich trotzdem sehen. Dino-Action! Das lasse ich mir nicht entgehen.

Wie die Nase eines Mannes…

http://news.sciencemag.org/biology/2015/03/how-big-average-penis
Andrey Popov/ Shutterstock

Wie groß ist ein „normaler“ Penis? Diese Frage, die Frauen vielleicht zum Kichern bringt und die eine oder andere Erinnerung weckt, kann bei Männern schon mal Unbehagen auslösen. Ist ER zu kurz? Zu dünn? Doch man darf aufatmen, liebe Männer: Eine Studie in der wissenschaftlichen Zeitschrift BJU International räumt auf mit überzogenen Vorstellungen und unrealistischen Erwartungen an die eigene Männlichkeit. David Veale und seine Kollegen aus London haben Daten aus 17 vorhergehenden Veröffentlichungen anderer Wissenschaftler zusammengetragen und so Messungen für Penislänge und –umfang von über 15.500 Männern erhalten. Die sorgfältige statistische Auswertung dieser Daten ergab, dass ein durchschnittlicher schlaffer Penis 9,16 cm lang ist; das erigierte Pendant bringt es auf 13,12 cm bei einem Umfang von 11,66 cm. Von wegen zwanzig Zentimeter! Statistisch gesehen könnten aufgrund dieser Berechnung nur fünf von 100 Männern überhaupt eine Länge von mehr als 16 cm vorweisen (im erigierten Zustand), auch kürzer als 10 cm kommt sehr selten vor. Wer jetzt selbst Hand anlegen will: gemessen wird vom Hüftknochen (eventuell vorhandenes Fett ein bisschen wegdrücken) bis zur Spitze, Vorhaut zählt nicht mit! Der Umfang kann am Ansatz oder in der Mitte gemessen werden.
Gewappnet mit diesem Wissen kann man dem nächsten Schwanzvergleich entspannt entgegensehen.

+++ Verkaufe: Nobelpreis, gut erhalten, politisch etwas angekratzt +++

nobe_sheetlSo ein Nobelpreis auf dem Kaminsims oder gerahmt überm Sofa, das wäre doch was! Wenn da nicht dieses lästige Problem wäre, dass man einen weltbewegenden wissenschaftlichen Durchbruch machen muss… Aber man darf aufatmen, es gibt eine einfachere Lösung: Wer knapp 5 Millionen Dollar auf der hohen Kante hatte, konnte sich vergangenen November einfach einen Nobelpreis ersteigern. Und wenn man Verwandte hat, die ein bisschen hinter dem Mond leben, kann man ihnen beim nächsten Besuch vielleicht sogar weismachen, dass man vor einigen Jahrzehnten eigenhändig die Struktur der DNA aufgeklärt hat.

Dafür bekam der Biologe James Watson nämlich seinen Nobelpreis. Gemeinsam mit seinen Kollegen Francis Crick, Maurice Wilkins und Rosalind Franklin (die bei der Nobelpreisnominierung mal eben ignoriert wurde) konnte er 1953 die Struktur der DNA-Doppelhelix zeigen.

Diese wissenschaftliche Entdeckung wurde vielfach als „die wichtigste des 20. Jahrhunderts“ bezeichnet und 1962 mit dem Nobelpreis für Physiologie oder Medizin geehrt. Und doch entschied sich James Watson vergangenes Jahr dafür, das gute Stück zu verkaufen. Die anderen beiden brauchte er nicht fragen, die sind inzwischen verstorben. James Watson ist damit der einzige noch lebende Wissenschaftler, der jemals seinen Nobelpreis verkauft hat.

Wie kommt man auf so eine Idee, das Symbol für die größte Errungenschaft seines Lebens herzugeben? Er hat wohl versucht, etwas wiedergutzumachen. Im Jahre 2007 sagte er in einem Interview mit der Sunday Times, dass Afrikaner genetisch bedingt im Durchschnitt weniger intelligent seien als Europäer und fügte hinzu „Nur, weil wir gerne wollen, dass alle Menschen gleichermaßen intelligent sind, ist das nicht automatisch so.“ Da mag er Recht haben, aber der Kommentar über die Intelligenzunterschiede zwischen Europäern und Afrikanern kam gar nicht gut an. Watson musste seinen Posten als Direktor des Cold Spring Harbor Laboratory in New York räumen, den er seit 1976 innegehabt hatte. Dieser Verlust seiner Position brachte finanzielle Konsequenzen mit sich. Trotzdem hat Watson einen Teil der Erlöse aus der Versteigerung an wissenschaftliche Einrichtungen gespendet, wie die University of Chicago, wo er selbst studierte, oder das Clare College Cambridge, wo er seine bahnbrechende Entdeckung über die Struktur der DNA machte. Ob es James Watsons Ruf wieder auf die Sprünge hilft, wird sich zeigen. Schade, dass eine so große Karriere, getragen von dieser unglaublich wichtigen Entdeckung, so bitter enden muss.

Größer ist besser!

By Ahodges7 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia CommonsForscher der Abteilung Geologie und Umwelt an der amerikanischen Stanford University haben gemeinsam mit Mathematikern des Swarthmore College USA herausgefunden, dass marine Lebewesen auf unserem Planeten immer größer werden. Dazu haben sie Fossilien und maßstabsgetreue Fotos von Tieren vermessen und so die Körpergrößen von 75 % der Arten von Meerestieren die in den letzten 542 Millionen Jahren lebten ermittelt. Das ist ziemlich gründlich. Und so darf man den Forschern glauben schenken, wenn sie zu dem Schluss kommen, dass Meerestiere im Laufe der Evolution immer größer geworden sind. Die statistische Auswertung der Daten hat ergeben, dass dies kein Zufall ist, sondern gerichtete Selektion. Das heißt, dass die größeren Tiere einer bestimmten Art sich öfter fortpflanzen und die Gene für ihre Körpergröße damit öfter weitergegeben werden als die Gene für geringere Größe. Doch warum können diese Tiere sich öfter fortpflanzen? Noel A. Heim und seine Kollegen, die diese Ergebnisse heute in der Zeitschrift Science veröffentlicht haben, führen es darauf zurück, dass größere Tiere zum einen erfolgreicher sind bei der Nahrungssuche und der Partnerwerbung, weil sie schlicht stärker sind als ihre kleineren Artgenossen. Eine größere Rolle scheint jedoch zu spielen, dass größere Tiere weiter schwimmen können und daher Nahrung und Partner in einem größeren Umkreis finden. Und noch etwas: Vielleicht ist dem einen oder anderen gerade schon durch den Kopf gegangen, dass die meisten größten Meerestiere Säugetiere sind – Wale, Walrosse und Seekühe zum Beispiel. Sie alle müssen auftauchen um Luft zu holen. Das scheint zunächst ein Nachteil zu sein, doch der Sauerstoffgehalt der Luft ist etwa 25 mal höher als der im Wasser, Luft „fließt“ viel schneller als Wasser durch die Atmungsorgane und die Aufnahme des Sauerstoffs ins Blut aus der Luft ist 300.000 mal schneller als aus dem Wasser. Dreihunderttausend! Das macht den Stoffwechsel eines Luftatmers viel effizienter als den eines Wasseratmers und gibt marinen Säugetieren damit die Möglichkeit, sehr groß zu werden.

Menschen sind im Laufe der Jahrtausende auch immer größer geworden. Ob das daran liegt, dass wir Luft atmen? Wohl eher daran, dass wir Supermärkte haben und unser Essen nicht selbst fangen müssen 😉

Die dunkle Seite der Mikrobiologie

Pseudomonas aeruginosa  Photo Credit: Janice Haney Carr Content Providers(s): CDC/ Janice Haney Carr - This media comes from the Centers for Disease Control and Prevention's Public Health Image Library (PHIL), with identification number #10043.Wir haben ein Problem und es wird schlimmer – multiresistente Bakterien. In den Nachrichten hört man immer wieder davon, sie werden „multiresistente Keime/ Erreger“, manchmal auch „multiresistente Krankenhauskeime“ genannt. Dabei handelt es sich um Bakterien, die nicht mehr durch Antibiotika bekämpft werden können. Solche Bakterien können sich zum Beispiel in offenen Wunden ansiedeln und deren Heilung verhindern. Auch unter Erregern von Tuberkulose, Durchfall und Lungenentzündung sind bereits multiresistente Erreger (MRE) aufgetaucht. Besonders häufig hört man dieser Tage von Pseudomonas aeruginosa, einem Krankenhauskeim, der 10 % aller Krankenhausinfektionen verursacht. Dieses Stäbchenbakterium ruft unter anderem Harnwegsinfektionen, Dickdarm- oder Hirnhautentzündungen hervor. Besonders Menschen mit schwachem Immunsystem, z.B. Kinder und ältere Leute oder Menschen mit Vorerkrankungen sind anfällig für die Infektion mit einem solchen MRE. Doch wie konnte es dazu kommen, dass Bakterien immun sind gegen fast jedes bekannte Antibiotikum? Und was können wir auf lange Sicht dagegen tun?

Antibiotika (die Einzahl lautet übrigens „Antibiotikum“) sind Stoffe, die Bakterien (und nur Bakterien – keine Viren!) abtöten können. Sie kommen vielfach in der Natur vor, da sie meistens von Bakterien oder Pilzen produziert und ausgeschieden werden. Die Bakterien und Pilze nutzen sie, um andere Mikroorganismen in ihrer Umgebung in Schach zu halten und möglichst viele Nahrungsquellen für sich zu behalten. Das allererste Antibiotikum, das von einem Wissenschaftler entdeckt wurde, war das Penicillin. Es wird von einem Schimmelpilz namens Penicillium hergestellt. Bereits 1893 konnte Bartolomeo Gosio Penicillin aus dem Pilz gewinnen. Seine Ergebnisse blieben jedoch unbekannt. 1897 veröffentlichte der französische Militärarzt Ernest Duchnese seine Doktorarbeit, in der er beschrieb, dass die Stallknechte im Militärhospital die Sättel der Pferde in einem dunkeln, feuchten Raum aufbewahrten, um die Bildung von Schimmel auf den Sätteln zu fördern. Auf die Frage, warum sie dies täten, antworteten die Stallknechte, dass die wunden Stellen auf den Rücken der Pferde dadurch besser heilten. Duchnese injizierte daraufhin einem Meerschweinchen, das er zuvor mit Typhus infiziert hatte, den Schimmelpilz. Das Meerschweinchen wurde vollkommen gesund.

Seit der Entdeckung des Penicillins wurde viele andere Antibiotika gefunden und jahrzehntelang erfolgreich zur Krankheitsbekämpfung eingesetzt. Doch damit begann auch das Problem. Die DNA von Bakterien verändert sich ständig durch zufällig auftretende Mutationen. Dabei kann es passieren, dass ein Gen entsteht, dass das Bakterium resistent macht gegen ein bestimmtes Antibiotikum. Wenn dieses Bakterium nun zum Beispiel an den Mandeln eines Patienten sitzt, der dieses Antibiotikum einnimmt, wird es nicht sterben. Stattdessen kann es sich rasant vermehren und so den Patienten zu einer Quelle eines resistenten Erregers machen. Von ihm aus kann es sich auf andere Menschen verbreiten.
Auch die Unzuverlässige Einnahme von Antibiotika kann resistente Keime erzeugen. Wenn man frühzeitig aufhört, das verschriebene Antibiotikum einzunehmen, weil man sich besser fühlt, wurden womöglich nicht alle Keime abgetötet. Die noch lebenden Keime können dann Resistenzen entwickeln.
Ein bedeutender – vielleicht der bedeutendste – Faktor heutzutage ist die massenhafte Verabreichung von Antibiotika an Tiere in Schlachthöfen. Damit will man verhindern, dass die Tiere krank werden. Würde ein Tier in Massenhaltung krank, könnte sich die Krankheit durch den engen Kontakt mit seinen Artgenossen rasend schnell in der ganzen Anlage verbreiten. Das will man verhindern und so gibt man extrem hohe Dosen Antibiotika. Wenn wir das Fleisch dieser Tiere essen, nehmen wir die Antibiotika auf und erschaffen dadurch in unserem Körper eine Brutstätte für Keime, die sich nun anpassen und Resistenzen entwickeln müssen.

Was kann die Wissenschaft tun, um diese verheerende Entwicklung aufzuhalten? Eine Abschaffung der Massentierhaltung wäre natürlich wünschenswert, würde aber lange dauern – zu lange. Also müssen schnell neue Antibiotika her. Da man diese aus Bakterien in der Natur gewinnt, könnte man einfach neue Bakterien suchen. Das hat man auch getan. Und festgestellt, dass sie nur Antibiotika herstellen, die schon auf dem Markt sind.
Man nimmt sogar an, dass man alle Bakterien, die sich im Labor kultivieren lassen, bereits kennt. Doch das sind nur etwa 1 % aller bekannten Bakterien! Die restlichen 99 %, die „dunkle Seite“, lassen sich nicht im Labor halten. Wenn man sie auf einem Nährboden versucht zu kultivieren, sterben sie. Was tun? Nun, wenn der Prophet nicht zum Berg kommt, muss der Berg eben zum Propheten kommen, nicht wahr! Die Mikrobiologen Slava Epstein und Kim Lewis haben eine Apparatur erfunden, mit der man Bakterien direkt in der Natur kultivieren kann. Kleine Kammern, die mit einer porösen Membran abgedeckt werden, werden in den Boden eingelassen. Die Poren in der Membran sind so klein, dass nur Bakterien hindurchpassen. Bakterien aus dem Boden können in die Kammern einwandern und dort wachsen. Nach etwa zwei Wochen „erntet“ man die Bakterien und untersucht, ob sie unbekannte Antibiotika produzieren.
Einige kleine Erfolge gab es bereits. Zwei neue Antibiotika namens lassomycin und Teixobactin wurden gefunden. Beide wirken gegen Tuberkulosebakterien und kein untersuchtes Bakterium zeigte Resistenz gegen Teixobactin.

Es besteht also Hoffnung. Dennoch geht die Suche sehr langsam voran und niemand kann vorhersagen, wie schnell neue resistente Keime auftauchen, denen auch die neuen Antbiotika nichts mehr ausmachen. Wer weiß, vielleicht brauchen wir eine ganz neue Herangehensweise in der Bekämpfung von bakteriellen Krankheiten. Ich bin neugierig, was den Wissenschaftlern einfällt und halte euch auf dem Laufenden!